Scroll Down to see the data for our 158-T-26 Organic Vapor Acid Gas Cartridge.

e-mail dentec@dentecsafety.com for any question or assistance

or call Toll Free 1-888-533-6832

<table>
<thead>
<tr>
<th>Chemical</th>
<th>CAS No.</th>
<th>ESTIMATED CARTRIDGE SERVICE LIFE IN HOURS AT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>10 ppm</td>
</tr>
<tr>
<td>Acetic anhydride</td>
<td>108-24-7</td>
<td>137</td>
</tr>
<tr>
<td>Acetone</td>
<td>67-64-1</td>
<td>36</td>
</tr>
<tr>
<td>Acrylonitrile</td>
<td>107-13-1</td>
<td>48</td>
</tr>
<tr>
<td>Allyl acetate</td>
<td>591-87-7</td>
<td>84</td>
</tr>
<tr>
<td>Allyl alcohol</td>
<td>107-18-6</td>
<td>73</td>
</tr>
<tr>
<td>Allyl chloride</td>
<td>107-05-1</td>
<td>34</td>
</tr>
<tr>
<td>Benzene</td>
<td>71-43-2</td>
<td>81</td>
</tr>
<tr>
<td>Bromobenzene</td>
<td>108-86-1</td>
<td>139</td>
</tr>
<tr>
<td>Butanol</td>
<td>71-36-3</td>
<td>127</td>
</tr>
<tr>
<td>Butanol, 2-</td>
<td>78-92-2</td>
<td>106</td>
</tr>
<tr>
<td>Butanone, 2-</td>
<td>78-93-3</td>
<td>80</td>
</tr>
<tr>
<td>Butyl acetate</td>
<td>123-86-4</td>
<td>85</td>
</tr>
<tr>
<td>Butyl acetate, sec</td>
<td>105-46-4</td>
<td>92</td>
</tr>
<tr>
<td>Butylamine</td>
<td>109-73-9</td>
<td>107</td>
</tr>
<tr>
<td>Carbon tetrachloride</td>
<td>56-23-5</td>
<td>85</td>
</tr>
<tr>
<td>Chlorobenzene</td>
<td>108-90-7</td>
<td>118</td>
</tr>
<tr>
<td>Chlorobutane, 1-</td>
<td>109-69-3</td>
<td>80</td>
</tr>
<tr>
<td>Chlorocyclopentane</td>
<td>930-28-9</td>
<td>86</td>
</tr>
<tr>
<td>Chloroform</td>
<td>67-66-3</td>
<td>37</td>
</tr>
<tr>
<td>Chloroheptane, 1-</td>
<td>629-06-1</td>
<td>91</td>
</tr>
<tr>
<td>Chlorohexane, 1-</td>
<td>544-10-5</td>
<td>85</td>
</tr>
<tr>
<td>Chloromethyl heptane, 3-</td>
<td>70</td>
<td>24</td>
</tr>
<tr>
<td>Chloropentane, 1-</td>
<td>543-59-9</td>
<td>83</td>
</tr>
<tr>
<td>Chloropropene, 1-</td>
<td>540-54-5</td>
<td>28</td>
</tr>
<tr>
<td>Chloropropene, 2-</td>
<td>75-29-8</td>
<td>29</td>
</tr>
<tr>
<td>Chloro-1,2-dichloroethene</td>
<td>98-88-4</td>
<td>113</td>
</tr>
<tr>
<td>Chloro-2-methylbutane, 2-</td>
<td>594-36-5</td>
<td>65</td>
</tr>
<tr>
<td>Chloro-2-methylpropane, 2-</td>
<td>507-20-0</td>
<td>41</td>
</tr>
<tr>
<td>Cumene</td>
<td>98-82-8</td>
<td>90</td>
</tr>
<tr>
<td>Cycloheptatriene, 1,3,5-</td>
<td>544-25-2</td>
<td>118</td>
</tr>
<tr>
<td>Cyclohexane</td>
<td>110-82-7</td>
<td>67</td>
</tr>
<tr>
<td>Cyclohexanone</td>
<td>108-94-1</td>
<td>123</td>
</tr>
<tr>
<td>Cyclohexene</td>
<td>110-83-8</td>
<td>84</td>
</tr>
<tr>
<td>Cyclohexylamine</td>
<td>108-91-8</td>
<td>109</td>
</tr>
<tr>
<td>Cyclooctane</td>
<td>292-64-8</td>
<td>95</td>
</tr>
<tr>
<td>Cyclopentanone</td>
<td>120-92-3</td>
<td>138</td>
</tr>
<tr>
<td>Cymene, p-</td>
<td>99-87-6</td>
<td>84</td>
</tr>
<tr>
<td>Decane</td>
<td>124-18-5</td>
<td>69</td>
</tr>
<tr>
<td>Chemical</td>
<td>CAS Number</td>
<td>melting point (°C)</td>
</tr>
<tr>
<td>----------------------</td>
<td>------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>Dibromoethane, 1,2-</td>
<td>106-93-4</td>
<td>138</td>
</tr>
<tr>
<td>Dibromomethane</td>
<td>74-95-3</td>
<td>80</td>
</tr>
<tr>
<td>Dibutylamine</td>
<td>111-92-2</td>
<td>74</td>
</tr>
<tr>
<td>Dichlorobenzene, 1,2-</td>
<td>95-50-1</td>
<td>121</td>
</tr>
<tr>
<td>Dichlorobutane, 1,4-</td>
<td>110-56-5</td>
<td>120</td>
</tr>
<tr>
<td>Dichloroethane, 1,1-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dichloroethane, 1,2-</td>
<td>107-06-2</td>
<td>60</td>
</tr>
<tr>
<td>Dichloroethylene, 1,2-cis</td>
<td>156-59-2</td>
<td>37</td>
</tr>
<tr>
<td>Dichloroethylene, 1,2-trans</td>
<td>156-60-5</td>
<td>17</td>
</tr>
<tr>
<td>Dichloromethane</td>
<td>75-09-2</td>
<td>11</td>
</tr>
<tr>
<td>Dichloropropene, 1,2-cis</td>
<td>542-75-6</td>
<td>95</td>
</tr>
<tr>
<td>Diethylamine</td>
<td>109-89-7</td>
<td>86</td>
</tr>
<tr>
<td>Diisobutyl ketone</td>
<td>108-83-8</td>
<td>69</td>
</tr>
<tr>
<td>Diisopropylamine</td>
<td>108-18-9</td>
<td>75</td>
</tr>
<tr>
<td>Dimethylamine</td>
<td>124-40-3</td>
<td>17</td>
</tr>
<tr>
<td>Dimethylbutane, 2,3-</td>
<td>79-29-8</td>
<td>70</td>
</tr>
<tr>
<td>Dipropylamine</td>
<td>142-84-7</td>
<td>91</td>
</tr>
<tr>
<td>Ethanol</td>
<td>64-17-5</td>
<td>64</td>
</tr>
<tr>
<td>Ethoxyethanol, 2-</td>
<td>110-80-5</td>
<td>85</td>
</tr>
<tr>
<td>Ethoxyethylacetate, 2-</td>
<td>111-15-9</td>
<td>89</td>
</tr>
<tr>
<td>Ethyl acetate</td>
<td>141-78-8</td>
<td>74</td>
</tr>
<tr>
<td>Ethyl benzene</td>
<td>100-41-4</td>
<td>93</td>
</tr>
<tr>
<td>Ethyl chloride</td>
<td>75-00-3</td>
<td>6.6</td>
</tr>
<tr>
<td>Ethylamine</td>
<td>75-04-7</td>
<td>40</td>
</tr>
<tr>
<td>Ethylidene, 5 - norborne, 2-</td>
<td>16219-75-3</td>
<td>85</td>
</tr>
<tr>
<td>Ethyl-1-butanol, 2-</td>
<td>97-95-0</td>
<td>85</td>
</tr>
<tr>
<td>Heptane</td>
<td>142-82-5</td>
<td>76</td>
</tr>
<tr>
<td>Heptanone, 2-</td>
<td>110-43-0</td>
<td>99</td>
</tr>
<tr>
<td>Heptanone, 3-</td>
<td>106-35-4</td>
<td>89</td>
</tr>
<tr>
<td>Hexane</td>
<td>110-54-3</td>
<td>51</td>
</tr>
<tr>
<td>Hexyl acetate</td>
<td>142-92-7</td>
<td>74</td>
</tr>
<tr>
<td>Isopentyl acetate</td>
<td>123-92-2</td>
<td>79</td>
</tr>
<tr>
<td>Isopropanol</td>
<td>67-63-0</td>
<td>60</td>
</tr>
<tr>
<td>Isopropenyl acetate</td>
<td>108-22-5</td>
<td>90</td>
</tr>
<tr>
<td>Isopropyl acetate</td>
<td>108-21-4</td>
<td>72</td>
</tr>
<tr>
<td>Isopropylamine</td>
<td>75-31-0</td>
<td>64</td>
</tr>
<tr>
<td>Mesityl oxide</td>
<td>141-79-7</td>
<td>119</td>
</tr>
<tr>
<td>Mesitylene</td>
<td>108-67-8</td>
<td>95</td>
</tr>
<tr>
<td>Methanol</td>
<td>67-56-1</td>
<td>0.2</td>
</tr>
<tr>
<td>Methoxyethanol, 2-</td>
<td>109-86-4</td>
<td>128</td>
</tr>
<tr>
<td>Methoxyethylacetate, 2-</td>
<td>110-49-6</td>
<td>103</td>
</tr>
<tr>
<td>Methyl acetate</td>
<td>79-20-9</td>
<td>37</td>
</tr>
<tr>
<td>Methyl chloride</td>
<td>74-87-3</td>
<td>0.06</td>
</tr>
<tr>
<td>Methyl chloroform</td>
<td>71-55-6</td>
<td>44</td>
</tr>
<tr>
<td>Methyl iodide</td>
<td>74-88-4</td>
<td>12</td>
</tr>
<tr>
<td>Methylamine</td>
<td>74-89-5</td>
<td>12</td>
</tr>
<tr>
<td>Methylcyclohexane</td>
<td>108-87-2</td>
<td>67</td>
</tr>
<tr>
<td>Methylcyclohexanone, 4-</td>
<td>589-92-4</td>
<td>108</td>
</tr>
<tr>
<td>Methylcyclopentane</td>
<td>96-37-7</td>
<td>61</td>
</tr>
<tr>
<td>Methyl-3 - cyclohexanone</td>
<td>591-24-2</td>
<td>99</td>
</tr>
<tr>
<td>Methyl-3-butanol, 1-</td>
<td>123-51-3</td>
<td>107</td>
</tr>
<tr>
<td>Methyl-4 - pentanone, 2-</td>
<td>108-10-1</td>
<td>94</td>
</tr>
<tr>
<td>Methyl-4-pentanol, 2-</td>
<td>108-11-2</td>
<td>83</td>
</tr>
<tr>
<td>Methyl-5 - heptanone, 3-</td>
<td>541-85-6</td>
<td>84</td>
</tr>
<tr>
<td>Nitropropane, 1-</td>
<td>108-03-2</td>
<td>140</td>
</tr>
<tr>
<td>Nonane</td>
<td>111-84-2</td>
<td>74</td>
</tr>
<tr>
<td>Compound</td>
<td>CAS</td>
<td>T</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>---------</td>
<td>----</td>
</tr>
<tr>
<td>Pentachloroethane</td>
<td>74-01-7</td>
<td>103</td>
</tr>
<tr>
<td>Pentane</td>
<td>109-66-0</td>
<td>60</td>
</tr>
<tr>
<td>Pentanediol, 2,4-</td>
<td>123-54-6</td>
<td>127</td>
</tr>
<tr>
<td>Pentanol</td>
<td>71-41-0</td>
<td>113</td>
</tr>
<tr>
<td>Pentanol, 2-</td>
<td>6032-29-7</td>
<td>96</td>
</tr>
<tr>
<td>Pentane, 2-</td>
<td>107-87-9</td>
<td>102</td>
</tr>
<tr>
<td>Pentane, 3-</td>
<td>96-22-0</td>
<td>92</td>
</tr>
<tr>
<td>Pentyl acetate</td>
<td>628-63-7</td>
<td>81</td>
</tr>
<tr>
<td>Perchloroethylene</td>
<td>127-18-4</td>
<td>118</td>
</tr>
<tr>
<td>Propanol</td>
<td>71-23-8</td>
<td>77</td>
</tr>
<tr>
<td>Propyl acetate</td>
<td>109-60-4</td>
<td>87</td>
</tr>
<tr>
<td>Propylamine</td>
<td>107-10-8</td>
<td>88</td>
</tr>
<tr>
<td>Pyridine</td>
<td>110-86-1</td>
<td>116</td>
</tr>
<tr>
<td>Tetrachloroethane, 1,1,2,2-</td>
<td>79-34-5</td>
<td>115</td>
</tr>
<tr>
<td>Toluene</td>
<td>108-88-3</td>
<td>104</td>
</tr>
<tr>
<td>Trichloroethylene, 1,1,2-</td>
<td>79-00-5</td>
<td>80</td>
</tr>
<tr>
<td>Trichloroethylene</td>
<td>79-01-6</td>
<td>61</td>
</tr>
<tr>
<td>Trichloropropane, 1,2,3-</td>
<td>96-18-4</td>
<td>123</td>
</tr>
<tr>
<td>Triethylamine</td>
<td>121-44-8</td>
<td>79</td>
</tr>
<tr>
<td>Trimethylpentane, 2,2,4-</td>
<td>540-84-1</td>
<td>66</td>
</tr>
<tr>
<td>Trimethylhexane, 2,2,5-</td>
<td>3522-94-9</td>
<td>66</td>
</tr>
<tr>
<td>Vinyl acetate</td>
<td>108-05-4</td>
<td>61</td>
</tr>
<tr>
<td>Vinyl chloride</td>
<td>75-01-4</td>
<td>44</td>
</tr>
<tr>
<td>Xylene, m-</td>
<td>108-38-3</td>
<td>110</td>
</tr>
</tbody>
</table>

This data is applicable for ambient conditions at 22 oC, relative humidities from 0 to 65% and a medium work rate (25 LPM). The other breakthrough times were calculated from Equation 2 taken from Nelson, G. O. and A. N. Correia, "Respirator Cartridge Efficiency Studies: VIII Summary and Conclusions" Am. Ind. Hyg. Assoc. J. 37: 514 (1976). These tests and calculations assume no safety factor.

For temperatures at 32 oC, multiply breakthrough times by 0.8.

For temperatures at 12 oC, multiply breakthrough times by 1.2.

For relative humidities between 65 and 80 %, multiply breakthrough times by 0.9.

For relative humidities between 80 and 95 %, multiply breakthrough times by 0.8.

For heavy work rates (35 LPM), multiply breakthrough times by 0.7.

For light work rates (15 LPM), multiply breakthrough times by 1.7.

These tests were performed under laboratory conditions and not under actual use conditions. Miller-Nelson Research Inc makes no warranties concerning protection by these air purifying respirator devices.

These are estimates and the user should determine the suitability of the devices under actual field conditions.

Compiled by Miller-Nelson Research Inc, 8 HarrisCt., Suite C-6, Monterey, CA 93940

Bold print numbers represent experimental 1% breakthrough data points obtained in the 1970's adjusted for a medium work rate and the increased carbon volume and capacity of current models.
ESTIMATED CARTRIDGE BREAKTHROUGH TIME FOR
DENTEC SAFETY SPECIALISTS 158-T-26 ORGANIC VAPOR/ACID GAS CARTRIDGE PAIR

MEDIUM WORK RATE, 22°C AND LESS THAN 65 % RH

<table>
<thead>
<tr>
<th>Chemical</th>
<th>CAS No.</th>
<th>ESTIMATED CARTRIDGE SERVICE LIFE IN HOURS AT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetic anhydride</td>
<td>108-24-7</td>
<td>10</td>
</tr>
<tr>
<td>Acetone</td>
<td>67-64-1</td>
<td>11</td>
</tr>
<tr>
<td>Acrylonitrile</td>
<td>107-13-1</td>
<td>44</td>
</tr>
<tr>
<td>Allyl acetate</td>
<td>591-87-7</td>
<td>74</td>
</tr>
<tr>
<td>Allyl alcohol</td>
<td>107-18-6</td>
<td>64</td>
</tr>
<tr>
<td>Allyl chloride</td>
<td>107-05-1</td>
<td>30</td>
</tr>
<tr>
<td>Benzene</td>
<td>71-43-2</td>
<td>71</td>
</tr>
<tr>
<td>Bromobenzene</td>
<td>108-86-1</td>
<td>126</td>
</tr>
<tr>
<td>Butanol</td>
<td>71-36-3</td>
<td>112</td>
</tr>
<tr>
<td>Butyl acetate, sec</td>
<td>105-48-4</td>
<td>81</td>
</tr>
<tr>
<td>Butylamine</td>
<td>109-73-9</td>
<td>98</td>
</tr>
<tr>
<td>Carbon tetrachloride</td>
<td>55-23-5</td>
<td>75</td>
</tr>
<tr>
<td>Chlorobenzene</td>
<td>108-90-7</td>
<td>105</td>
</tr>
<tr>
<td>Chlorobutane, 1-</td>
<td>109-69-3</td>
<td>70</td>
</tr>
<tr>
<td>Chlorocyclopentane</td>
<td>930-28-9</td>
<td>76</td>
</tr>
<tr>
<td>Chloroform</td>
<td>67-66-3</td>
<td>32</td>
</tr>
<tr>
<td>Chloroheptane, 1-</td>
<td>629-06-1</td>
<td>80</td>
</tr>
<tr>
<td>Chloroform, 1-</td>
<td>544-10-5</td>
<td>75</td>
</tr>
<tr>
<td>Chloromethyl heptane, 3-</td>
<td>123-86-4</td>
<td>75</td>
</tr>
<tr>
<td>Chloroform, 1-</td>
<td>540-54-5</td>
<td>81</td>
</tr>
<tr>
<td>Chloropropene, 1-</td>
<td>540-54-5</td>
<td>81</td>
</tr>
<tr>
<td>Chloropropene, 2-</td>
<td>75-29-6</td>
<td>75</td>
</tr>
<tr>
<td>Chlorotoluene, o-</td>
<td>98-88-4</td>
<td>100</td>
</tr>
<tr>
<td>Chloro-2-methylbutane, 2-</td>
<td>594-36-5</td>
<td>58</td>
</tr>
<tr>
<td>Chloro-2-methylpropane, 2-</td>
<td>507-20-0</td>
<td>36</td>
</tr>
<tr>
<td>Cumene</td>
<td>98-82-8</td>
<td>79</td>
</tr>
<tr>
<td>Cycloheptatriene, 1,3,5-</td>
<td>544-25-2</td>
<td>108</td>
</tr>
<tr>
<td>Cyclohexane</td>
<td>110-82-7</td>
<td>61</td>
</tr>
<tr>
<td>Cyclohexanone</td>
<td>108-94-1</td>
<td>112</td>
</tr>
<tr>
<td>Cyclohexene</td>
<td>110-83-8</td>
<td>76</td>
</tr>
<tr>
<td>Cyclohexylamine</td>
<td>108-91-8</td>
<td>100</td>
</tr>
<tr>
<td>Cyclooctane</td>
<td>292-64-8</td>
<td>86</td>
</tr>
<tr>
<td>Cyclopentane</td>
<td>120-92-3</td>
<td>125</td>
</tr>
<tr>
<td>Cymene, p-</td>
<td>99-87-6</td>
<td>74</td>
</tr>
<tr>
<td>Decane</td>
<td>124-18-5</td>
<td>63</td>
</tr>
<tr>
<td>Dibromoethane, 1,2-</td>
<td>106-93-4</td>
<td>125</td>
</tr>
<tr>
<td>Dibromomethane</td>
<td>74-95-3</td>
<td>73</td>
</tr>
<tr>
<td>Dibutylamine</td>
<td>111-92-2</td>
<td>68</td>
</tr>
<tr>
<td>Dichlorobenzene, 1,2-</td>
<td>95-50-1</td>
<td>107</td>
</tr>
<tr>
<td>Dichlorobutane, 1,4-</td>
<td>110-56-5</td>
<td>106</td>
</tr>
<tr>
<td>Dichloroethane, 1,1-</td>
<td>75-34-3</td>
<td>72</td>
</tr>
<tr>
<td>Dichloroethane, 1,2-</td>
<td>107-06-2</td>
<td>53</td>
</tr>
<tr>
<td>Dichloroethylene, 1,2-cis</td>
<td>156-59-2</td>
<td>29</td>
</tr>
<tr>
<td>Dichloroethylene, 1,2-trans</td>
<td>156-60-5</td>
<td>32</td>
</tr>
<tr>
<td>Dichloromethane</td>
<td>75-09-2</td>
<td>10</td>
</tr>
<tr>
<td>Dichloropropene, 1,2-</td>
<td>78-87-5</td>
<td>64</td>
</tr>
<tr>
<td>Compound</td>
<td>Density</td>
<td>Viscosity</td>
</tr>
<tr>
<td>--</td>
<td>---------</td>
<td>-----------</td>
</tr>
<tr>
<td>Dichloropropene, 1,3-cis, trans</td>
<td>0.84</td>
<td>0.29</td>
</tr>
<tr>
<td>Diethylamine</td>
<td>1.09</td>
<td>0.78</td>
</tr>
<tr>
<td>Disobuty ketone</td>
<td>1.06</td>
<td>0.63</td>
</tr>
<tr>
<td>Diisopropylamine</td>
<td>1.08</td>
<td>0.68</td>
</tr>
<tr>
<td>Dimethylamine</td>
<td>1.24</td>
<td>0.15</td>
</tr>
<tr>
<td>Dimethylbutane, 2,3-</td>
<td>0.79</td>
<td>0.22</td>
</tr>
<tr>
<td>Diisobutyl ketone</td>
<td>1.14</td>
<td>0.83</td>
</tr>
<tr>
<td>Ethanol</td>
<td>0.64</td>
<td>0.27</td>
</tr>
<tr>
<td>Ethoxyethanol, 2-</td>
<td>0.75</td>
<td>0.26</td>
</tr>
<tr>
<td>Ethoxylacetate, 2-</td>
<td>0.78</td>
<td>0.27</td>
</tr>
<tr>
<td>Ethyl acetate</td>
<td>1.41</td>
<td>0.65</td>
</tr>
<tr>
<td>Ethyl benzene</td>
<td>1.00</td>
<td>0.82</td>
</tr>
<tr>
<td>Ethyl chloride</td>
<td>0.75</td>
<td>0.29</td>
</tr>
<tr>
<td>Ethylamine</td>
<td>0.75</td>
<td>0.26</td>
</tr>
<tr>
<td>Ethyl-1-butanol, 2-</td>
<td>0.97</td>
<td>0.26</td>
</tr>
<tr>
<td>Heptane</td>
<td>1.42</td>
<td>0.69</td>
</tr>
<tr>
<td>Heptane, 2-</td>
<td>1.10</td>
<td>0.90</td>
</tr>
<tr>
<td>Heptane, 3-</td>
<td>1.06</td>
<td>0.81</td>
</tr>
<tr>
<td>Hexane</td>
<td>1.11</td>
<td>0.46</td>
</tr>
<tr>
<td>Hexyl acetate</td>
<td>1.42</td>
<td>0.65</td>
</tr>
<tr>
<td>Isopentyl acetate</td>
<td>1.23</td>
<td>0.69</td>
</tr>
<tr>
<td>Isopropyl acetate</td>
<td>0.67</td>
<td>0.53</td>
</tr>
<tr>
<td>Isopropyl acetate</td>
<td>1.08</td>
<td>0.79</td>
</tr>
<tr>
<td>Isopropyl acetate</td>
<td>1.08</td>
<td>0.64</td>
</tr>
<tr>
<td>Isopropylamine</td>
<td>0.75</td>
<td>0.59</td>
</tr>
<tr>
<td>Mesyl oxide</td>
<td>1.41</td>
<td>1.08</td>
</tr>
<tr>
<td>Mesitylene</td>
<td>1.08</td>
<td>0.84</td>
</tr>
<tr>
<td>Methanol</td>
<td>0.67</td>
<td>0.22</td>
</tr>
<tr>
<td>Methoxylacetate, 2-</td>
<td>1.09</td>
<td>1.13</td>
</tr>
<tr>
<td>Methoxyethanolacetate, 2-</td>
<td>1.10</td>
<td>0.91</td>
</tr>
<tr>
<td>Methyl acetate</td>
<td>0.79</td>
<td>0.32</td>
</tr>
<tr>
<td>Methyl chloride</td>
<td>0.74</td>
<td>0.05</td>
</tr>
<tr>
<td>Methyl chloroform</td>
<td>0.71</td>
<td>0.39</td>
</tr>
<tr>
<td>Methyl iodide</td>
<td>0.74</td>
<td>0.11</td>
</tr>
<tr>
<td>Methylamine</td>
<td>0.74</td>
<td>0.11</td>
</tr>
<tr>
<td>Methylcyclohexane</td>
<td>0.68</td>
<td>0.61</td>
</tr>
<tr>
<td>Methylcyclohexanol, 4-</td>
<td>0.58</td>
<td>0.99</td>
</tr>
<tr>
<td>Methylcyclopentane</td>
<td>0.96</td>
<td>0.55</td>
</tr>
<tr>
<td>Methyl-3 - cyclohexanone</td>
<td>0.59</td>
<td>0.90</td>
</tr>
<tr>
<td>Methyl-3-butanol, 1-</td>
<td>1.23</td>
<td>0.95</td>
</tr>
<tr>
<td>Methyl-4 - pentanol,2-</td>
<td>1.08</td>
<td>0.85</td>
</tr>
<tr>
<td>Methyl-4-pentanol, 2-</td>
<td>1.08</td>
<td>0.73</td>
</tr>
<tr>
<td>Methyl-5 - heptanole, 3-</td>
<td>0.54</td>
<td>0.76</td>
</tr>
<tr>
<td>Nitropropane, 1-</td>
<td>1.08</td>
<td>0.127</td>
</tr>
<tr>
<td>Nonane</td>
<td>0.11</td>
<td>0.68</td>
</tr>
<tr>
<td>Pentachloroethane</td>
<td>1.02</td>
<td>0.76</td>
</tr>
<tr>
<td>Pentane</td>
<td>0.10</td>
<td>0.54</td>
</tr>
<tr>
<td>Pentanone, 2,4-</td>
<td>1.23</td>
<td>0.116</td>
</tr>
<tr>
<td>Pentanol</td>
<td>1.71</td>
<td>0.100</td>
</tr>
<tr>
<td>Pentanol, 2-</td>
<td>0.60</td>
<td>0.85</td>
</tr>
<tr>
<td>Pentane, 2-</td>
<td>1.07</td>
<td>0.92</td>
</tr>
<tr>
<td>Pentane, 3-</td>
<td>0.96</td>
<td>0.84</td>
</tr>
<tr>
<td>Pentyl acetate</td>
<td>0.62</td>
<td>0.71</td>
</tr>
<tr>
<td>Perchloroethylene</td>
<td>0.12</td>
<td>0.105</td>
</tr>
<tr>
<td>Propanol</td>
<td>1.71</td>
<td>0.68</td>
</tr>
<tr>
<td>Propyl acetate</td>
<td>1.09</td>
<td>0.77</td>
</tr>
<tr>
<td>Chemical</td>
<td>CAS No.</td>
<td>Percent</td>
</tr>
<tr>
<td>------------------------</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>Propylamine</td>
<td>107-10-8</td>
<td>80</td>
</tr>
<tr>
<td>Pyridine</td>
<td>110-86-1</td>
<td>106</td>
</tr>
<tr>
<td>Tetrachloroethane, 1,1,2,2-</td>
<td>79-34-5</td>
<td>102</td>
</tr>
<tr>
<td>Toluene</td>
<td>108-88-3</td>
<td>92</td>
</tr>
<tr>
<td>Trichloroethane, 1,1,2-</td>
<td>79-00-5</td>
<td>70</td>
</tr>
<tr>
<td>Trichloroethylene</td>
<td>79-01-6</td>
<td>54</td>
</tr>
<tr>
<td>Trichloroethylene, 1,2,3-</td>
<td>96-18-4</td>
<td>108</td>
</tr>
<tr>
<td>Trimethylamine</td>
<td>121-44-8</td>
<td>72</td>
</tr>
<tr>
<td>Trimethylpentane, 2,2,4-</td>
<td>540-84-1</td>
<td>60</td>
</tr>
<tr>
<td>Trimethylhexane, 2,2,5-</td>
<td>3522-94-9</td>
<td>60</td>
</tr>
<tr>
<td>Vinyl acetate</td>
<td>108-05-4</td>
<td>54</td>
</tr>
<tr>
<td>Vinyl chloride</td>
<td>75-01-4</td>
<td>3.9</td>
</tr>
<tr>
<td>Xylene, m-</td>
<td>108-38-3</td>
<td>97</td>
</tr>
</tbody>
</table>

Bold print numbers represent experimental 1% breakthrough data points obtained in the 1970's adjusted for a medium work rate and the increased carbon volume and capacity of current devices.

This data is applicable for ambient conditions at 22°C, relative humidities from 0 to 65% and a medium work rate (25 LPM).

These tests and calculations assume no safety factor.

For temperatures at 32°C, multiply breakthrough times by 0.8.

For temperatures at 12°C, multiply breakthrough times by 1.2.

For relative humidities between 65 and 80%, multiply breakthrough times by 0.9.

For relative humidities between 80 and 95%, multiply breakthrough times by 0.8.

For heavy work rates (35 LPM), multiply breakthrough times by 0.7.

For light work rates (15 LPM), multiply breakthrough times by 1.7.

These tests were performed under laboratory conditions and not under actual use conditions. Miller-Nelson Research Inc makes no warranties concerning protection by these air purifying respirator devices.

These are estimates and the user should determine the suitability of the devices under actual field conditions.

Compiled by Miller-Nelson Research Inc, 8 Harris Ct., Suite C-6, Monterey, CA 93940